
Building the Network Module for a Didactic Game Engine

Luiz Emmerich, Dennis Tanaka, Rodrigo Petriche, Felipe Kamakura, João Bernardes

Escola Politécnica da Universidade de São Paulo,
Department of Computer Engineering and Digital Systems, Brazil

Figure 1 – The simple software architecture of the proposed module.

Abstract

This short paper presents the architecture of a network
module being implemented for enJine, and aspects
about its use in the development of massively
multiplayer games (MMG). EnJine is a didactic game
engine implemented in Java. The paper presents some
partial results based on the implementation of a
prototype architecture and application.

Keywords: networking, client-server, MMG, game
engine, NIO

Authors’ contact:
{luiz.emmerich,dennis.tanaka,rodrigo.petr
iche,felipe.kamakura,joao.bernardes}@poli
.usp.br

1. Introduction

The main goal of the project described in this paper is
the development of a network module for use in
Multiplayer Online Games with future support to
Massively Multiplayer Online Games. This component
will be part of enJine, an open-source game engine
developed by the Interactive Technologies Laboratory
(INTERLAB) at University of Sao Paulo. This engine
was written in the Java language and supports the
creation of complete single player 3D games (using
Java 3D) through a set of classes that abstract high
level entities such as game stages and objects. EnJine
and its use in teaching Computer Graphics are
described in more detail by Tori et al. [2006].

Like most of enJine's implementation, the new
network component must have low coupling with the

implementation technology and offer appropriate
resources for its use as a didactic tool.

Moreover it has some other functional
requirements, such as:

• Support for multiple players and servers
• Game state synchronization
• Division of players in logical groups
• Cheat-proof architecture
• Support to different kinds of messages

2. Related Work

There are several published works discussing network
architectures, if not for MMGs, for applications with
similar requirements, such as collaborative virtual
environments. Here only the works more closely
related to this project are mentioned.

BERNARDES et al. [2003] show how networking
is one of the most critical technical issues in a MMG.
That is accomplished by discussing many related
problems, such as the number of users, security and
world persistence. Different network architectures are
also presented, showing they are usually client-server,
peer-to-peer (p2p) or a hybrid solution combining
those two.

CALTAGIRONE [2002] presents an architecture
for a MMORPG engine based in the client-server
model that attempts to achieve six goals: security,
maintainability, scalability, low network traffic, client
application performance, and load balancing.



CECIN [2004] proposes a hybrid solution using
both client-server and p2p models, and focusing on the
security, scalability and fail recovery aspects.

In SMED [2002] many important techniques for
improving networking are presented such as dead
reckoning and interest management.

KO [2004] and LEE [2004] discuss the use of more
than one server for large scale online games to assure
the quality and the real time interaction between users.
Adaptive server selection and server replication are
shown as possible techniques to be used with these
many servers.

3. Network Architecture

The choice of the network architecture on which the
development of a MMG will be made is a fundamental
step to the project of any game of this genre. It is this
architecture that will define the effective maximum
number of users connected to the game, define the
security against "cheaters" and permit scalability to the
game.

To choose one among the numerous existing
architectures, some aspects have been taken in
consideration:

• Maintenance, implementation cost and system
performance (hardware and bandwidth basically);

• Security, especially against dishonest players (or
cheaters);

• Scalability;
• Compatibility to the development of a wide range

of multiplayer games, MMGs in special. A MMG
requires an architecture capable of providing a
way to host a large number of players playing at
the same time and persistent worlds (a game
environment where a player can leave at a time
and when he comes back later, he will encounter
the same world with only some changes made by
the players or the game management). Persistent
worlds are mainly related to the database
architecture (which was not the focus of this
project), but the database architecture is highly
influenced by the network architecture, as the
absence of a centralized server requires special
methods of data persistence;

• Viability: in this case, how would be the
integration with the enJine, which has its own
requirements such as simplicity of use and
implementation;

• Reliability and fault tolerance.

After consulting similar works, discussed in the last
section, three possible network architectures were
chosen for further study: peer-to-peer and client-server
or a hybrid implementation, using both.

P2P offered the best aspects of cost for hardware,
low consumption of bandwidth and scalability due to
its distributed architecture. It presents an architecture
capable of hosting millions of players simultaneously
by transferring most of the processing role and
bandwidth consumption to each one of the users. But
there are some drawbacks on the utilization of this
architecture to a MMG. Because each player's client
has so much responsibility for the game data (about his
own character and actions) that is produced and
transmitted through the network, malicious can
manipulate this data more easily, making such games
potentially more vulnerable. Some research is being
made to try to overcome this issue, but most of these
works are far from trivial, failing the simplicity
requisite.

The client-server model provides most of what was
required previously such as security, simplicity and
tolerance against cheating by being a centralized
architecture. Its drawbacks were related to scalability
and hardware and bandwidth requirements. Most of the
commercial MMG are implemented using this
architecture.

At this point, a hybrid solution seemed to be best
suited to the problem. But there is a big drawback in
this, which is its high complexity of implementation.
By adding user manipulation of data to permit
scalability and yet trying to keep redundancy to a
reliable centralized server, a large amount of added
synchronization and logic are required to make it a
practical solution. Figure 2 shows a sample hybrid
architecture proposed by Cecin [2004].

Figure 2 – Hybrid architecture used on FreeMMG.
Source: CECIN [2004].

After analyzing the advantages and disadvantages
of each solution, the client-server model was chosen,



based on the analysis shown in table 1. That table
expresses the criteria that were used to choose the best
architecture for the project and the weight given to
each one. Grades and weights were chosen based on
the analysis of the related work discussed on section 2
of this paper, in a subjective way. Grades vary from 1
to 5 and a higher grade indicates a better option.

Table 1: Network architecture selection.

Criteria Weight P2P Client /
Server Hybrid

Cost:
Implementation,

maintenance
5 5 2 3

Performance:
Bandwidth

consumption
5 5 2 4

Tolerance
against unfair

players:
4 1 5 3

Scalability: 3 5 3 4
Persistent

worlds: 5 1 5 3

Viability: 5 2 5 2
Complexity: 5 3 4 1

Reliability and
fault tolerance: 3 5 2 4

Total: 114 125 101

4. Software Architecture

By choosing the network architecture, some
considerations about the software implementation and
game logic were taken in account.

To achieve scalability, it was decided to keep each
game area associated to one server at a time, due to the
heavy utilization of game stages or areas (also known
as dungeons in RPGs) on non-MMGs (the enJine
network implementation, should be suited to the
creation of games like that as well), and the possibility
to create MMGs based on that concept as well. To let
many servers take care of a single game area,
additional logic would have to be implemented.
Software complexity to synchronize data on servers
would then grow to a point not desired by the
developers and unfit for the simplicity required by
games made with enJine.

The software architecture developed in this project
and shown in Figure 1 consists basically of extensions
from the existing Game class already present in enJine.
The first one is the MultiplayerGame class. This
class contains some functions related to the connection
phase and data transmission that has to be implemented
in the both client and server.

Aside from that, there are the
MultiplayerServer and MultiplayerClient
classes in the framework package, which inherit from
MultiplayerGame. The client class encapsulates
the functionality related to rendering, like the already
implemented SinglePlayerGame class. This class
treats the user input and sends it to the server as
messages, and processes the server message to update
the client state.

The MultiplayerServer class is responsible
for the logical aspects of the game, such as the
validation of user actions and collision detection. It has
some server-related network functions like connection
acceptance and message broadcasting to update the
client games.

The Connection class represents the link
between server and client, and stores the information of
each point of the connection. It also has two-buffers to
store messages that will be sent and the ones that
arrive.

Listener is a thread that keeps going through all
connections to check the arrival of new messages.
When one is found, it is put in the correspondent
connection's buffer to be treated in the future.

Message is an abstract class that currently must
be implemented by the user. It contains the fields and
methods necessary to mount and dismount messages
for network communication.

All these classes have been included in the enJine
framework package to free users from the need to
consider several of the implementation aspects
discussed above.

5. Development Tools

An important software tool used in the project is a Java
package called New Input and Output (NIO). It
consists of a number of classes designed specifically to
provide high-performance I/O system. The package
includes improvements in buffer management, scalable
network and others. Most of all, it boosts performance
and speed, greatly improving the efficiency of the java
code [Hitchens 2002].

6. Results and Conclusions

As the project is still in development there are no final
results yet. Until now a functional prototype has been
built and the project's main decisions have already
been made and tested to an extent.

The prototype is basically a game where the players
move 3d models around the screen and all players sees
it. It is a very simple game used only to assure that the
requirements are accomplishable. The tests with it



were not yet finished but it has already proved useful,
helping to make some of the important choices
previously discussed in this document.

In the prototype the player uses the keyboard
arrows to move a 3d model around the screen. Each
action produced by the player generates a message to
the game server which in its turn, processes the
message and updates the state of the game, forwarding
the results to all players. This way everyone sees the
movement of all the models on the screen.

The only class not completely implemented in this
prototype is the Message class. The messages in it are
simple strings with fields such as type of message,
destiny and data. These fields are separated by
semicolons.

The next steps of the project are the tests regarding
bandwidth consumption by the messages and
processing time, and the implementation of a
multiplayer game using the developed module to test
its performance in real world applications.

Acknowledgements

Thanks to Romero Tori for the opportunity to work on
this project and to Ricardo Nakamura for the valuable
assistance on technical issues.

References

BERNARDES, J.L., TORI, R., JACOBER, E., NAKAMURA, R., 
BIANCHINI, R., 2003. A Survey on Networking for 
Massively Multiplayer Online Games. In: Wjogos 2003.

CALTAGIRONE, S., KEYS, M., SCHLIEF, B. AND WILLSHIRE,
M.J., 2002. Architecture for a Massively Multiplayer
Online Game Engine. In: Proceedings of the Consortium
for Computing Sciences in Colleges, December 2002.

CECIN, F.R., MARTINS, M.G. AND BARBOSA, J.L.V., 2004.
FreeMMG: A Hybrid Peer-to-Peer and Client-Server
Model for Massively Multiplayer Games. In:
Proceedings of the SIGCOMM’04 Workshops, August
2004.

LEE, K., KO, B. AND CALO, S. 2004. Adaptive Server
Selection for Large Scale Interactive Online Games. In:
Proceedings of the NOSSDAV’04 Workshops, June 2004.

KO, B., RUBENSTEIN, D., 2004. Distributed Server
Replication in Large Scale Networks. In: Proceedings of
the NOSSDAV’04 Workshops, June 2004.

Hitchens, R., 2002. Java NIO. O’Reilly.

SMED, J., KAUKORANTA, T. AND HAKONEN, H., 2002. A
Review on Networking and Multiplayer Computer
Games. Technical Report 454, Turku Centre for
Computer Science.

TORI, R., BERNARDES JR., J. L. AND NAKAMURA, R., 2006.
Teaching Introductory Computer Graphics Using Java

3D, Games and Customized Software: a Brazilian
Experience, 2006. In: Proceedings of Siggraph 2006
Educators Program, 30 July – 3 August 2006 Boston.
New York: ACM Press.


	Source: CECIN [2004].
	P2P
	Client / Server
	125

